La sélection scientifique de la semaine (numéro 130)

- La sécheresse exceptionnelle qui sévit en Californie coûtera plus de 2 milliards de dollars (en anglais). L’Etat a pris des dispositions drastiques pour réduire la consommation d’eau (en anglais). Lire aussi le reportage de Claudine Mulard, du Monde, dans la … Continuer la lecture

Continue reading

Quelques insectes des Pyrénées

Featured

Pterostichus nigritus
 J’ai récemment fait 2 acquisitions :
- Un nouvel appareil photo, rien d’extraordinaire puisqu’il s’agit d’un compact, mais tout de même doté d’un bon mode “macro” (mise au point à une distance de 3cm). Pour être précis il s’agit de l’Olympus SZ-16
-  Un guide entomologique, à vrai dire le meilleur guide pour débuter, et il n’y a pas que moi qui le dit… On l’appelle couramment le “Chinery” édité depuis 1988 pour la version français le titre exact est “Insectes de France et d’Europe occidentale” – ISBN-10: 2081288230.
Et voici les premiers résultats que je suis fier de partager avec vous:
Oreina cacaliae. Un coléoptère de la famille des chrysomelidés (qui contient tout de même 30 000 espèces)… En apparence assez proche des coccinelles avec un corps bien bombé mais d’aspect plus allongé, la principale différence est le nombre d’article des tarses la dernière partie de la pattes composés de segments articulés (4 visibles ici contre 3 pour les coccinelles).
Callimorpha dominula, la belle larve d’un beau paillon: l’écaille rouge que j’espère bien prendre en photo rapidement ! La difficulté des lépidoptères c’est que les ouvrages sont souvent moins riches en illustrations pour les chenilles. En l’occurrence le Chinery de montre qu’un dessin de l’adulte.
Carabus auratus, ou carabe doré parfois aussi appelé jardinière. Ce carabe réalise une digestion externe et aspire les tissu corporels liquéfiés pour se nourrir… Dommage pour le bloc de roche au premier plan, mais la bête est rapide !
Cincidela campestris, ou cincidèle champètre bien identifiable à ces tâches blanchâtres sur les élytres et aux couleures métalliques du dessus du corps (un beau vert) et des pattes (cuivrées). Un insecte relativement véloce qu’il m’a fallu poursuivre quelque temps avant de pouvoir en obtenir une photo potable.
Iberodorcadion fuliginator… un peu flou au niveau des antennes, il s’agit d’un capricorne (ou longicorne). Photo prise début mai dans les pelouses d’altitude à proximité du pic de Teulère. Cet insecte est un peu plus rare et ne figure pas dans le Chinery.
Pterostichus nigritus, un joli coléoptère typique de la famille des carabidés. J’avoue ne pas être certain de l’identification à 100%… il s’agit peut-être de P. madidus.
Scatophaga stercoraria (la célèbre “mouche à merde”) qui contrairement à ce que laisse présager son nom de se nourrit pas d’excréments mais d’autres insectes présents dans les excréments… On reconnait cette mouche à sa forte pilosité  jaune roussâtre. (Ok…ce ne sont pas des poils mais des soies mais il s’agit tout de même de pilosité)
Spialia sertorius sur une Orchis mâle (Orchis mascula). Photo prise début mai dans les pelouses d’altitude à proximité du pic de Teulère. (Ne figure pas dans le Chinery – pour les fans de papillons mieux vaut un guide entièrement dédié à ce groupe.)
Scaeva pyrastri se nourrit du nectar d’une immortelle d’Italie (Helichrysum italicum). Une mouche sympathique avec un vol stationnaire très rapide, mieux vaut attendre qu’elle se pose pour prendre tenter de prendre la photo.
Pour ma part je trouve ces premiers clichés assez gratifiants, de quoi renouer avec l’entomologie que j’ai délaissé depuis trop longtemps. Un petit passe-temps que je vous invite à essayer et si vous ne savez pas comment commencer voici quelques pistes complémentaires à l’achat d’un guide “papier”:
- Vous pouvez partager vos petites découvertes et demander des identifications grâce aux réseaux sociaux (merci le Web…). On peut par exemple citer le groupe “Entomologie France” sur facebook.
- Pour les Béarnais vous pouvez rejoindre ou contacter le groupe entomologique des Pyrénées occidentales (GEPO).
[Retour à l'accueil]
Continue reading

Les plus petits artistes du monde.

Featured

2013-hm-57-large
La délicatesse est dans le détail et le détail est dans le minutieux. Encore une fois je vais tenter de vous emmener dans le monde des petits animaux (et comparses). Je vais évoquer certains exemples dont j’ai déjà parlé mais aussi de nouveaux.

Le monde des animaux microscopiques, encore peu exploré, est celui du mystère comme je l’ai expliqué en long, en large et en travers dans un article précédent. Mais c’est aussi un monde d’une délicate beauté. Il est souvent difficile de réaliser à quel point des organismes si petits peuvent développer, voir même utiliser des structures aussi complexes. Et dans ce rôle il n’y a pas seulement les animaux, je vais dévier un peu de mon monde favori pour parler aussi d’autres organismes minuscules qui valent le détour.

Dans cet article je vais éviter de trop approfondir (notamment parce qu’on ne connait pas bien la fonction de tous ces organes). L’idée de cet article est plus esthétique que scientifique !

Vis-à-vis des animaux microscopiques il y a deux sortes de gens : ceux qui connaissent les rotifères et ceux qui ne les connaissent pas. Toute personne qui a pris un microscope et y a déposé un peu de terre de son jardin aura remarqué ces délicats petits animaux. Ils sont un peu les stars du microscope. Mais en dehors des naturalistes possédant cet outil, ils ne sont à peu près connus de personne. Pour faire simple, un rotifère c’est un animal mesurant généralement moins d’un millimètre, pourvus de petites mâchoires et de cils permettant la locomotion et/ou la prise de nourriture, situés uniquement à l’avant de l’animal. Leurs mâchoiresgénéralement constituées de sept pièces masticatrices sont souvent des structures fragiles et pleines de détails. Ils se déplacent aussi grâce à une couronne de cils qui battent de concert. Le battement de ces cils ressemble à un mouvement de vagues reflétant la lumière du microscope dans une magnifiquedanse.

Commençons avec quelques photos de rotifères eux même :

Floscularia, vivant dans un tube. Remarquez les cils qui permettent à l’animal de se nourrir.  (Source: Floscularia)

Filinia longiseta avec ses appendices incroyablement longs : le corps ne fait que 120µm… (Source, Filinia)

Polyarthra major, le rotifère qui s’échappe en sautant. Remarquez les détails des « rames », ces structures en forme de plumes à longeant le corps vers la gauche et tendues en avant vers la droite ! (Source : Polyarthra

Bon voilà pour un très rapide tour des rotifères. Mais ce n’est pas fini, je vous ai parlé de leur mâchoires, en voici encore un aperçu succin. Ces minuscules structures demandent d’être étudiées avec la microscopie électronique pour qu’elles puissent révéler tous leurs secrets.

Sophie a évoqué les bdelloïdes dans son dernier article. Ces derniers cachent beaucoup de surprises, mais Sophie ne vous a pas tout dévoilé (sinon elle aurait pu écrire un livre !), voici leurs mâchoires :

Réalisez juste le niveau de détails par rapport à la taille de l’organe ! Mâchoires (appelées « trophi ») de Philodinavus paradoxus. Chez les bdélloides, elles servent généralement à mastiquer les particules de matière organique. (Source : Philodinavus)

Dans le genre mâchoires terrifiantes :

Les mâchoires de Lindia deridderae, un rotifère prédateur chassant d’autres micro-animaux, incluant d’autres rotifères… (source : Lindia deridderae

Et dans le genre mâchoires improbables :

Les mâchoires de Lindia elsae (même genre que le précédent, pourtant les mâchoires sont très différentes). A quoi peuvent bien servir ces deux spirales asymétriques et dentés à l’arrière des mâchoires ? (Source : Lindia elsae

Et pour les curieux qui en veulent encore et aimeraient observer plus d’improbables petites mâchoires de l’enfer, vous pouvez consulter cette très chouette base de données : mâchoires de rotifères

Toujours pas convaincus ? Plusieurs rotifères ont gagné le concours de photographiemicroscopique 2013 d’Olympus (une compagnie de microscopie), en voici par exemple une magnifique illustration avec les rotifères à « lorica » (ce qui signifie armure) :

Des rotifères autour d’une algue. En bleu la lorica, et en rouge les cils. (Source : rotifères stars)

Et puis parce qu’il faut toujours finir avec ça si on peut, un planche d’Haeckel sur les rotifères : 

Ca se passe de commentaires. Pour le nom des différentes espèces, vous pouvez aller voir ici : source.

Mais il n’y a pas que les rotifères qui ont des mâchoires complexes, mon petit chouchou, le Micrognathozoa (quelques infos , ou ) n’est pas en reste non plus :

Ces mâchoires sont considérées comme les plus complexes chez les animaux microscopiques, jusqu’à plus de trente sous parties ont été dénombrées. (Source : les mâchoires de mon chouchou)

Vis-à-vis des animaux microscopiques il y a trois sortes de gens : ceux qui ne connaissent pas les rotifères, ceux qui les connaissent, et ceux qui s’intéressent même à d’autres trucs encore moins connus !  Comme l’a très bien souligné Sophie, si l’injustice fait que peu de gens connaissent les rotifères, les gastrotriches sont encore moins célèbres, quand bien même ils comptent parmi les animaux les plus abondants de la planète (cf encore mon précédent article). Pourtant ils font partis des plus coquets des animaux, ornementés d’écailles, d’épines, de tubes tous dessinées avec des structures insoupçonnables. Si certains manquent d’esthétique, d’autres révèlent leur beauté une fois placés au microscope.

L’épineux Thaumastoderma vu en microscopie optique. Mais attendez de voir les détails de ces épines… (Source : l’adorable Toto)

Les  épines de Thaumastoderma vues de plus près au microscope électronique à balayage. En fait « Thaumastoderma » signifie « peau surprenante » et on comprend ici pourquoi… D’autant plus que chaque épine mesure environ 10µm.  (Source : Toto le coquet)

L’épineux Acanthodasys avec ses épines et ses écailles. Microscopie confocale à balayage laser, avec auto fluorescence de la cuticule. Photo prise par mes soins.

La partie antérieure de l’étrange Lepidodasys. « Lepido » signifiant écailles, on comprend bien que les écailles sont un caractère important de ce petit monstre. Chacune ne mesure que 10µm. Photo prise par mes soins.

Le hérisson microscopique : Chaetonotus. Les plus longues épines sont coudées et possèdent elles-mêmes des petites épines. Certaines semblent même attachées à des muscles. L’animal mesure une centaine de micromètres au total (un dixième de millimètre). Photo prise par mes soins.

Encore plus mystérieux que les gastrotriches, il y a les loricifères (hop, je vous invite encore une fois à revenir sur mon article précédent). Découverts récemment, et particulièrement difficiles à récolter (il faut les chercher pour les trouver), ces animaux, comptant parmi les plus petit au monde, sont ornementés de structures improbables! Allant même jusqu’à présenter des différences entre mâles, femelles et différents stades de vie. Malheureusement, prendre (et trouver) une photo mettant correctement en valeur les ornementations de ces animaux est difficile, et seul des dessins rendent justice à ces maîtres du détail.

Photo au microscope optique d’un loricifère. Interpréter ensuite ces animaux n’est pas aisé, les dessins rendent donc mieux justice à la finesse de ces animaux. (Source : ver feu d’artifice

Dessin interprétatif de Titaniloricus inexpectatovus. Bien sûr, ne tenez pas compte des légendes, mais elles illustrent bien le niveau de détail de ces animaux. (Source : Gad, 2005

Dessin de Pliciloricus enigmaticus un peu plus stylisé cette fois ci. (Source : dessins de loricifères)

Les foraminifèressont des organismes très souvent microscopiques. Cette fois-ci, ce ne sont pas des animaux, mais des eucaryotes (organismes à noyau cellulaire) unicellulaires. Ces cellules vivent dans une coque, appelée test. Et la cellule en son centre étends des filaments, ou tentacules cellulaires, plus correctement appelés pseudopodes. Déjà complexe comme organisation… Mais le plus magnifique ce sont les formes que peuvent avoir ces tests. Comme des petites coquilles de mollusques microscopiques percées de trous. Microscopiques ? Pas toujours. Ces animaux, aussi unicellulaires soient-ils (difficile de faire plus unicellulaires qu’unicellulaire) peuvent former des tests de plusieurs centimètres. Dans le fossile, on en connait même atteignant une dizaine de centimètres ! Ils forment alors les nummulites, les « roches à pièces » (pensez à la numismatique, le fait de collectionner des pièces). Certains contemporains, atteignent jusqu’à 20 cm, ce qui les place parmi les plus gros organismes unicellulaires. En fait, ces cellules géantes, atteignant ceci dit difficilement le millimètre, sont souvent plus grosses que les animaux que j’ai présentés plus haut, mais leurs formes valent le détour.

Une collection de différents foraminifères observés au microscope électronique à balayage. (Source : collection de foraminifères)


Elphidium crispum, ce genre de foraminifères est relativement commun. (Source : Elphidium) 



Bien évidement Haeckel est encore passé par là. (Source : Haeckel et les forams

Il est parfois un peu dur de comprendre quel est le rôle de si magnifiques ornementations chez les organismes microscopiques. A part le scientifique, qui peut les voir ? Leurs congénères peut-être, mais lorsque l’on est si petit, on ne doit pas voir grand choses quand bien même on a des yeux. Et si ce n’est pas esthétique, à quoi servent des épines si détaillées, des mâchoires si complexes lorsque l’on mesure un dixième de millimètre ? Alors, est-ce simplement un caprice de la nature ? Un cadeau pour les curieux ? Ou simplement qu’à ces dimensions, ça ne compte pas tellement ? J’ai passé sous silence un grand nombre d’autres organismes animaux, ou unicellulaires, mais ce n’était qu’un aperçu très succin des incroyables formes que prennent certains organismes microscopiques !
Continue reading

Bdelloïdes, vedettes déchues dans l’ombre des tardigrades

Featured

Bdelloid_close_640
Bravant des épreuves hautement mortelles pour l’homme, de la dessiccation extrême aux radiations ionisantes en passant par des températures glaciales, ces êtres s’affirment pleinement dans leur vie microscopique répandus aux quatre coins du monde. N’en déplaise aux tardigrades, pour une fois changeons de vedettes. Car il se pourrait bien que ces derniers soient détrônés dans leur toute-puissance par une créature oubliée de beaucoup, qui côtoie de très près nos oursons d’eau et qui présente des caractéristiques pour le moins déroutantes… J’ai nommé (avec tout le suspens que le titre n’a pas su garder)… les bdelloïdes !
Leur apparence peu banale rend les rotifères bdelloïdes encore plus intéressants (Source)

C’est quoi ça ?

Toujours la même histoire, les gens ne connaissent que les belles gueules, les choupis, les mignons-tout-plein. Alors forcément « tardigrade » ça sonne plus de cloches que « bdelloïdes ». J’avoue que les premiers sont adorables avec leur petit corps tout rond et leurs huit petites patounes qui s’agitent dans tous les sens… Non, non, non, revenons à nos bdelloïdes, ils sont pas mal non plus après tout, dans leur genre. Les bdelloïdes font partie des rotifères (pour les curieux, le dernier arbre phylogénétique suggéré se trouve à la fin de cet article), et ce sont bien des animaux malgré leur corps tout bizarroïde. Tout comme les tardigrades, ils sont microscopiques et on les trouve dans les milieux relativement humides, depuis des lacs et étangs jusqu’à des milieux terrestres riches en eau comme les mousses ou lichens. Mettons de côté leur intéressante morphologie pour cette fois, avec tout de même une petite illustration par l’image :

 

 

Le syndrome de la Belle-au-bois-dormant


Mon introduction promettait quand même des informations plus sensationnelles alors entrons dans le vif du sujet. Une des exceptionnelles qualités des bdelloïdes est leur capacité à dormir. Dès que les conditions rendent la survie fortement compromettante, ni une ni deux ils passent en mode mort-vivant, en arrêtant toute activité et en réduisant leur métabolisme à un tel point qu’il en devient indétectable. Lorsque le milieu s’assèche, ce qui est relativement courant dans la mousse par exemple, ils entrent dans un état d’anhydrobiose, se desséchant également, perdant 60% de leur volume et se transformant en une boule compacte et immobile. Et puis ils reprennent leur vie, tranquillement, une fois le milieu de nouveau humide. Cette capacité d’anhydrobiose est cependant partagée par de nombreux organismes vivant dans ces milieux à déshydratation fréquente.
Là où les bdelloïdes s’illustrent, c’est dans une autre forme de dormance. Quand la nourriture vient à manquer, plutôt que de mourir de faim, nos bestioles vont bouder dans leur coin en attendant que ça se passe, arrêtant au passage toute activité. Ils sont ainsi capables de survivre à une absence de nourriture plus longue que leur propre durée de vie (30 jours). Et si la disette dure 40 jours, 60% des individus seront capables de reprendre leur vie comme si de rien n’était et de se reproduire dans les quelques jours qui suivent le retour à la normale. Ainsi que l’ont souligné Ricci & Fontaneto dans leur superbe article de 2009, c’est comme si on mettait une centaine d’humains à la diète totale pendant 100 ans, et qu’une soixantaine survivaient jusqu’au bout, puis se goinfraient un petit coup et faisaient des gosses, l’air de rien…
Cette capacité illustre un phénomène assez étrange lorgné par beaucoup d’humains. Contrairement à d’autres organismes capables de dormance extrême, tels que des nématodes qui résistent également à la dessiccation (mais pas au manque de nourriture), les bdelloïdes, à l’instar des tardigrades, ne vieillissent pas quand ils dorment ! Tels des Belles-au-bois-dormant microscopiques, ils sont plongés dans un sommeil qui préservera leur jeunesse jusqu’à l’arrivée de leur prince charmant à eux.
Malgré les apparences, beaucoup de points communs entre ces deux créatures… Le bdelloïde, sous forme déshydratée, est tirée de la review de Ricci & 2009 (prise par Giulio Melone)
Encore mieux, il semblerait même que ces longues siestes obligatoires, qui nous apparaissent comme une contrainte à leur survie, soient en fait un véritable élixir de jouvence pour eux. Non contents d’en sortir tout frais à leur réveil, les études chez certaines espèces montrent que les mères ayant subi une dessiccation produisent une descendance avec une aptitude phénotypique plus élevée, autrement dit une descendance qui se porte mieux et qui vit plus vieux ! Probablement en cause une autre de leur délicieuses particularité, la capacité à réparer leur ADN (Gladyshev & Meselson 2008). Les épisodes de dormance étant source de dégâts dans leur matériel génétique, leur capacité à le régénérer est indispensable. Il semblerait cependant que ces processus de réparation aient également des effets bénéfiques sur des traits autres que la résistance à la dessiccation. A tel point que les bdelloïdes seraient presque dépendants de ces évènements de forte sécheresse : il a été montré que l’aptitude phénotypique des populations maintenues hydratée déclinait comparée à celles qui subissent des stress hydriques cycliques !
Ainsi protégés en boules compactes imperméables aux dangers extérieurs, les bdelloïdes  agissent comme des petites graines, jouant le rôle de propagules se dispersant dans tous les milieux, à tel point qu’ils sont abondants jusqu’en Antarctique et qu’on les trouve même dans des milieux montagneux au dessus de 4000 m (Sohlenius & Bostrom 2005 ; Fontaneto & Ricci 2006), du haut de leurs 450 espèces déjà décrites et probablement des centaines d’autres à découvrir.
Si vous n’êtes pas encore épatés par ces êtres microscopiques qui dominent déjà le monde, peut-être une petite information supplémentaire devrait faire son petit effet : chez les bdelloïdes, il n’y a que des filles !

Sans sexe, tout va bien 


Cette dernière caractéristique, qui n’en est pas moins extraordinaire, leur a valu leur qualification par le grand Maynard Smith (1986) de « Scandales évolutionnaires » ! En effet, les bdelloïdes constituent le groupe le plus large et le plus vieux (ils ont été trouvés dans de l’ambre vieille de 35 à 40 millions d’années) présentant des évidences de reproduction asexuée sur le long terme. Comme toutes les espèces du groupe la pratiquent, cette caractéristique est sans doute apparue chez un de leurs ancêtres à tous. Ainsi, on ne trouve que des femelles chez les bdelloïdes, qui produisent des filles par le phénomène de parthénogenèse. Si cette reproduction est bien connue chez beaucoup d’autres espèces (citons les pucerons par exemple), elle est généralement alternée avec des reproductions classiques avec des mâles. Mais pas chez les bdelloïdes. Le groupe ne contient aucun mâle et s’en sort pourtant très bien (une petite leçon à tirer ?).
(Source)
L’impact le plus important d’une absence de reproduction sexuée concerne leur matériel génétique : aucune occasion de mixer les ADN des pères et mères pour obtenir une diversité qui pourrait coller à celle observée. Qu’à cela ne tienne, les bdelloïdes ont plus d’un tour dans leur grand sac et disposent d’un mécanisme capable de générer de la diversité : la capacité suggérée d’effectuer du transfert horizontal de gènes ! Ils seraient ainsi capables, pendant leur processus de réparation de l’ADN, d’incorporer dans leur génome des gènes trouvés dans leur environnement. En somme ils font de la récupération à leur échelle et se bricolent un génome comme des grands !

Applaudissons les artistes

Pour résumer, nous avons des organismes capables de se reproduire sans sexe, de se diversifier sans se mixer entre eux, de moduler leur ADN, de survivre à des stress les plus extrêmes, d’arrêter de vieillir momentanément, et qui ont réussi à coloniser la planète entière (on trouve même des espèces marines !), tout ça en étant microscopiques et inconnus de tous ! Quand bien même il suffit de se baisser (et d’avoir une bonne loupe) pour en observer… J’espère que cet article leur aura apporté leur petit moment de gloire qu’ils méritent amplement !
Dernières suggestion phylogénétique de l’équipe Wey-Fabrizius et al. publiée en février dernier. De manière intéressante, les bdelloïdes, comparé à leurs frères acanthocéphales, ont une biologie complètement différente ! Ces derniers sont parasites obligatoires manipulateurs de leurs hôtes

Bibliographie

Vous retrouverez une grande partie de ces infos dans cette Review à la lecture particulièrement agréable :
  • Ricci, C. & Fontaneto, D. 2009. The importance of being a bdelloid : Ecological and evolutionary consequences of dormancy. Italian Journal of Zoology, 76, 240-249.
Et une autre mini-review plutôt portée sur l’aspect génétique :
  • Rice, W. & Friberg, U. 2007. Genomic clues to an ancient asexual scandal. Genome Biology, 8, 232
Sophie Labaude
Continue reading

La sélection scientifique de la semaine (numéro 119)

- C’était attendu. C’est fait. Des chercheurs sont parvenus à reprogrammer des cellules adultes en cellules souches embryonnaires, ce qui ouvre la voie au clonage thérapeutique mais aussi la perspective d’un grand débat éthique puisqu’on est du même coup dans … Continuer la lecture

Continue reading

Le suicide du criquet, une aubaine pour la forêt

Featured

zombie-cricket

Encore un insecte qui a perdu la tête. Après avoir frénétiquement exploré les alentours jusqu’à la découverte d’une rivière, voilà que le criquet s’y précipite, lui qui n’est pas aquatique pour un sou. Drôle d’idée quand on ne sait pas nager. Serait-ce un acte de bravoure et de dévotion de sa part sachant son rôle potentiellement prépondérant sur la communauté des autres insectes de la forêt, et… sur le maintien d’une espèce de truite menacée ? Heu, mais c’est quoi ce long ver immonde qui s’extirpe onduleusement de l’anus de notre criquet ??
Le criquet vient de sauter dans l’eau. S’extirpe ensuite un long ver de son anus (Source)

Encore une histoire de zombies…    

Avant d’évoquer les conséquences d’un tel geste pour son entourage, un petit rembobinage express s’impose pour comprendre ce qui a poussé notre compère à commettre cet acte désespéré.  
L’histoire commence dans la rivière même, bien loin de notre suicidaire. Parmi la faune foisonnante, on rencontre des nématomorphes, de longs vers de plusieurs dizaines de centimètres, ondulant gracieusement (ou diaboliquement, c’est selon). Ces animaux sont des parasitoïdes, autrement dit ils se développent dans d’autres organismes avec, contrairement aux parasites, une forte tendance à tuer ces derniers… Qui plus est, les nématomorphes disposent d’un cycle de vie complexe, impliquant donc plusieurs hôtes. Les larves vont d’abord infester des insectes que l’on trouve dans l’eau, comme des larves d’éphémères. Alors que ces dernières vont ensuite se transformer, le ver va survivre au processus et pouvoir alors accéder au milieu terrestre. Comme tout se recycle, notre éphémère, même mort, se fera grignoter par quelqu’autre insecte, parmi lesquels des criquets ! Ensuite, l’histoire ressemble drôlement à celle de nos parasites manipulateurs, créatures zombifiantes à qui j’ai récemment consacré tout un article. Si le nématomorphe lorgne le milieu aquatique, nécessaire pour l’achèvement de son cycle et notamment sa reproduction, le criquet a malheureusement pour ce dernier une vie terrestre. Le parasitoïde semble adopter une stratégie plutôt payante pour lui : il prend le contrôle du criquet !
Ca commence par des symptômes assez inquiétants, le criquet se mettant à être beaucoup plus explorateur qu’à la normale, tout en étant, et contrairement à son habitude, subitement attiré par la lumière (Ponton et al. 2011). Pour comprendre les mécanismes impliqués dans les changements de comportements, l’équipe de Biron (2008) a mené une investigation protéomique, mettant en évidence ce qu’il se passe concrètement dans la tête du criquet quand il perd les pédales. Sans surprise, une des protéines dont l’expression est altérée au moment du changement de comportement du criquet dispose justement des domaines classiquement impliqués dans le système visuel. Et puis une fois la source d’eau détectée, le criquet saute dedans, ni plus ni moins. Les chiffres sont impressionnants. Par exemple, Sanchez et ses collaborateurs (2008) ont montré que 80% des criquets Nemobius sylvestris infectés par le nématomorphe Paragordius tricuspidatus se jettent à l’eau, contre 10% chez les individus sains (de corps, mais apparemment pas d’esprit…). Les nématomorphes du genre Gordionus, quant à eux, augmentent de 20 fois les chances qu’un criquet finisse dans l’eau (Sato et al. 2011a). Pour les criquets qui ont la chance d‘échapper à la noyade, mais aussi de survivre à l’extirpation du ver par leur anus, le comportement reviendra progressivement à la normal (Ponton et al. 2011). Quant au nématomorphe, l’idée est de s’extirper de l’insecte avant que celui-ci, dans sa vaine panique, n’attire des prédateurs. Et dans le cas où ver et criquet finissent ensemble dans un estomac, le combat n’est pas perdu pour le parasitoïde qui va utiliser ses talents d’extirpation, mais en s’échappant cette fois par la bouche du prédateur… 
Pour voir d’autres vidéos, notamment un nématomorphe ressortant d’une grenouille, un petit tour sur cet article de SSAFT. Et puis par ici pour une touche d’humour.

L’effet papillon

De nombreuses études ont montré que les parasites et parasitoïdes, malgré l’image négative que le grand public leur alloue, sont souvent d’une grande importance dans l’écosystème. Dans l’exemple des criquets, l’idée la plus intuitive serait que les nématomorphes pourraient avoir un impact sur la dynamique de population des criquets. Mais c’est à une autre échelle que l’on va se pencher maintenant : celle de l’écosystème tout entier.
Faisons un petit tour au Japon où Sato et ses collaborateurs ont étudié (et étudient encore) de très près le rôle des nématomorphes du genre Gordionus. Là-bas vit la truite Salvenicus leucomaenis japonicus, menacée par la surpêche et la destruction de son habitat. Or, les scientifiques se sont vite rendus compte que si un criquet dans l’eau est nécessaire pour le nématomorphe, cela constitue également une aubaine pour les habitants de la rivière, et notamment notre truite. Sato et ses collaborateurs (2011a) ont donc entrepris de mesurer la contribution énergétique apportée par les criquets aux truites. Le résultat est impressionnant : les criquets constitueraient 60% de l’apport de calories annuel des truites, une part très loin d’être négligeable, pouvant même contribuer à la persistance de l’espèce. De plus, cette importance n’est pas qu’une question de proportion puisque d’une part les criquets augmentent la masse totale de nourriture ingérée (les truites mangent moins quand il n’y a pas de criquets dans l’eau), et d’autre part la quantité de nourriture ingérée par les truites est directement corrélée à l’importance de la présence en nématomorphes aux alentours, mais curieusement pas corrélée à la présence des criquets sur les rebords de la rivière, preuve de l’importance du parasitoïde. De plus, la présence de nématomorphes est plus faible dans les plantations de conifères qui remplacent petit à petit les forêts natives (Sato et al. 2011b). Le changement de type de forêt pourrait donc avoir comme conséquence indirecte une diminution de la population de truites, par l’intermédiaire seul de la diminution de la population de nématomorphes…
Cycle de vie du nématomorphe et flux d’énergie autour de la truite. D’après Sato et al. 2011a.
Enfin, élargissons notre champ d’investigations. Les criquets constituent une aubaine pour la truite, notamment puisqu’ils sont des proies faciles, se mouvant maladroitement dans l’eau quand ils ne sont pas déjà morts. La truite va donc délaisser les autres proies potentielles, qui elles sont plus adaptées au milieu aquatique (et donc fichtrement plus fourbes à attraper). Des insectes dont la larve est aquatique, notamment, vont ainsi voir leur succès de passage à la vie terrestre augmenter grâce au répit assuré par les criquets. Ephémères et demoiselles par exemple, vont ainsi pouvoir se métamorphoser, migrant de la rivière vers la forêt, et permettant une présence de proies pour les animaux terrestres. Le tout sans compter que l’écosystème de la rivière est lui aussi chamboulé. Le répit laissé aux invertébrés aquatiques mène également à une diminution de la biomasse en algues, alors plus consommées par ces derniers, bousculant ainsi le flux d’énergie à l’échelle de la rivière toute entière (Sato et al. 2012).

Effet en cascade de la présence de criquets dans la rivière, sur les poissons, les invertébrés aquatiques et les ressources organiques. D’après Sato et al. 2012.
Quand on regarde l’ensemble du tableau, on a l’écosystème de toute une forêt, incluant la rivière, modulé par un ver à priori insignifiant et cantonné dans un autre organisme. Cet effet papillon est tel que Sato et ses collègues ont publié, en début d’année, une étude portant sur le rétablissement à long terme d’une forêt en lien avec les populations de criquets et des nématomorphes. De quoi observer parasites et parasitoïdes d’un tout nouvel œil…

Bibliographie

Biron, D.G., Ponton, F., Marché, L., Galeotti, N., Renault, L., Demey-Thomas, E., Poncet, J., Brown, S.P., Jouin, P. & Thomas, F. 2006. « Suicide » of crickets harbouring hairworms: a proteomics investigation. Insect Molecular Biology, 15, 731-742.
Ponton, F., Otalora-Luna, F., Lefèvre, T. Guerin, P., Lebarbenchon, C., Duneau, D., Biron, D.G. & Thomas, F. 2011. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behavioral Ecology, 22, 392-400.
Sanchez, M.I., Ponton, F., Schmidt-Rhaesa, A., Hughes, D.P., Missé, D. & Thomas, F. 2008. Two steps to suicide in crickets harbouring hairworms. Animal Behaviour, 76, 1621-1624.
Sato, T., Watanabe, K., Kanaiwa, M., Niizuma, Y., Harada, Y. & Lafferty, K.D. 2011a. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology, 91, 201-207.
Sato, T., Watanabe, K., Tokuchi, N., Kamauchi, H., Harada, Y. & Lafferty, K.D. 2011b. A nematomorph parasite explains variation in terrestrial subsidies to trout streams in Japan. Oikos, 120, 1596-1599.
Sato, T., Egusa, T., Fukushima, K., Oda, T., Ohte, N., Tokuchi, N., Watanabe, K., Kanaiwa, M., Murakami, I. & Lafferty, K. 2012. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts. Ecology Letters, 15, 786-793.
Sato, T., Watanabe, K., Fukischima, K. & Tokuchi, N. 2014. Parasites and forest chronosequence: Long-term recovery of nematomorph parasites after clear-cut logging. Forest Ecology and Management, 314, 166-171.
Sophie Labaude
Continue reading

Le naturalisme, un 6eme sens ?

Featured

Arenicole turitule en coeur2
Article écrit à 6 mains, par Nicobola, Boris et Aurélide.
 « Joyeux anniversaire ! »
   
Source
Cette phrase, on l’entend au moins une fois par an. Et qui dit anniversaire dit… oui, gâteau, on sait Donald, tu as toujours faim. Oui, fiesta, on sait Nico, tu aimes faire la bringue !!! Mais surtout… oui Aurélide, tu as raison : les cadeaux !
Souvenez-vous, quand vous étiez petits, ouvrant de grands yeux devant l’amoncellement de présents… Dès lors que vous aviez repéré un emballage qui vous semblait prometteur, plusieurs choix s’offraient à vous. Certains palpaient le papier cadeau, tandis que d’autres secouaient les boites mystérieuses pour essayer d’en deviner le contenu… d’autres encore se précipitaient et arrachaient l’emballage d’un coup sec pour révéler ce qui y était dissimulé !
Mais que viennent faire les cadeaux d’anniversaire sur ce blog ? Eh bien, comme les enfants qui cherchent à deviner ce qui se cache sous les emballages, les naturalistes utilisent différentes techniques pour chercher à savoir ce qu’ils ont entre les mains en faisant intervenir l’ensemble des cinq sens. Nous allons vous présenter ici comment identifier les êtres vivants qui nous entourent à l’aide de tous les moyens que nous avons à notre disposition, sans avoir besoin d’appareils technologiques perfectionnés.

La vue :
Commençons avec le sens que nous utilisons le plus en tant que primates : la vue.
La majorité des critères qu’on utilise pour distinguer les espèces entre elles sont des critères que l’on peut observer. C’est bien pour ça que tous les guides naturalistes utilisent largement des illustrations et des descriptions visuelles. Cependant les formes et les couleurs ne sont pas les seules caractéristiques visibles des êtres vivants : d’autres indices visuels auxquels on pense moins peuvent nous aider grandement à l’identification de certains animaux, comme le mouvement (déplacement, comportement) ou les traces qu’ils peuvent laisser dans leur environnement ! Voici quelques exemples : Il existe dans les mares une diversité insoupçonnée car la plupart du temps quasiment invisible tant les animaux sont minuscules. On trouve dans ces mares trois taxons de crustacés majoritaires : les cladocères (dont font partie les daphnies), les copépodes et les ostracodes. Il est parfois difficile de différencier ces tous petits animaux à l’œil nu. Evidemment l’identification est facilitée par l’utilisation d’une loupe. Pourtant, plusieurs autres caractères peuvent permettre de les différencier sans avoir besoin de matériel optique, ni de devoir connaitre la morphologie très précise des espèces. Les cladocères nagent en battant des antennes par petits bonds verticaux tandis que les copépodes nagent horizontalement par à-coups successifs aussi grâce à leurs antennes. Quant aux ostracodes, ils ont plutôt tendance à rester au fond et nagent avec leurs pattes de manière continue. Voilà comment l’observation de leur mouvement peut aider à identifier des organismes.  Copépodes :
Daphnies :
Ostracodes :


Anecdotes de Nicobola à propos de petites bêbêtes méconnues : Un autre petit exemple – qui me tient à cœur car j’ai travaillé dessus – ce sont les Limnodriloidinae, qui font partie d’un taxon plus large dit des « clitellates ». Les clitellates contiennent entre autres les sangsues et les vers de terre. Rien de bien appétissant là dedans. On trouve en grand majorité dans ce groupe des petits vers à la limite du microscopique, très difficiles à différencier. En pratique on les colore et on observe au microscope leurs organes génitaux (oui les scientifiques sont des pervers). Plus particulièrement, ce sont des caractères tels que « l’entonnoir spermatique » ou la « vasa deferentia » que l’on observe. Cependant mon chef, lui, pouvait reconnaître les vers vivants (voir même morts) presque toujours au niveau du genre sous une loupe binoculaire ! Pour vous dire, les gens qui savent faire ça dans le monde doivent se compter sur les doigts d’une main. Son secret ? La forme générale certes mais aussi, le mouvement des individus lorsque ceux-ci sont encore vivants. Par exemple les Enchytraeidae (de petits vers blancs très communs dans le sol, comme le ver grindal pour les aquariophiles) ont une carapace plus rigide, leurs mouvements seront donc en général plus lents et moins souples. Les individus du genre Pristina, qu’on trouve souvent dans les mares, sont bien plus actifs et vont se promener un peu partout. Voici un exemple, un ver du genre Pristina :

Un jour mon chef m’a envoyé en Afrique du Sud chercher (entre autres) ces fameux Limnodriloidinae. Mais comment reconnaître les Limnodriloidinae ? « Facile ! » me dit-il, « Ils sont rouges (comme beaucoup d’autres) et ils s’enroulent sur eux même et explorent les alentours avec leur tête. » Drôle de comportement ! Ca n’a pas raté ! J’en ai trouvé qui répondaient à cette description, que j’ai filmé, identifié comme ce groupe grâce à la vidéo, puis confirmé grâce à la morphologie de l’appareil génital plus tard et au final grâce à l’ADN aussi. Voici une vidéo pour vous convaincre (probablement la plus intéressante que vous n’ayez jamais vue !) :



C’est au tour d’Aurélide de prendre la parole !


Dans un tout autre contexte, on nous apprend en forêt à faire la différence entre des traces de différents animaux, par exemple entre un chevreuil ou un renard. Vous avez aussi peut-être appris à différencier leurs empreintes de pas sur le sol ou à détecter leurs crottes et autres déjections. Vous pouvez par ailleurs lire cet article de Taupo. Mais mis à part les mammifères craintifs qui sortent principalement la nuit, il existe une myriade d’animaux difficiles à trouver dont les traces sont parfois les seules choses qui trahissent leur présence. Dans beaucoup d’environnements, on peut aussi utiliser le critère des traces pour identifier des animaux. Si vous allez régulièrement à la plage, vous avez sûrement dû voir des pêcheurs chercher des vers pour appâter leurs hameçons à l’aide d’une pelle ou d’une bêche : ils s’en vont chercher des vers marins fouisseurs. Ça n’a peut-être pas l’air, mais finalement, c’est très simple d’en trouver quand on sait ce qu’il faut regarder.
L’arénicole (Arenicola marina) est un ver psammivore, c’est-à-dire qu’il se nourrit de particules accrochées aux grains de sable. Concrètement, il avale plein de sable puis l’estomac fait le tri. Ça leur donne un rôle hyper important puisqu’ils nettoient le sable! Et tout comme les vers de terre, ils laissent des turricules à la surface du sol. Ils aspirent le sable par la bouche ce qui crée une petite dépression à la surface du sol au dessus de leur tête, et de l’autre côté, ils expulsent le sable nettoyé sous forme de tortillon. On peut donc savoir dans quelle direction il est enfoui.
Pas besoin ici d’avoir le ver sous les yeux pour savoir duquel il s’agit !


A gauche : turritule en forme de cœur (St Valentin oblige) laissée par une arénicole (photo prise par nos soins). A droite, schéma de l’arénicole dans son terrier (la tête est à gauche où elle aspire le sable, à gauche, elle expulse), source.
D’autres annélides telles que la célèbre Lanice conchilega (de la famille des Terebellidae parce qu’elles sont très belles) se nourrissent en récoltant les particules fines à l’aide de leurs tentacules. Pour se protéger, elles construisent un tube à partir de débris de coquillages ou de grains de sable agglomérés par du mucus. Seule une petite partie du tube sort du sable et à l’extrémité de celui-ci, des débris de plus petite taille sont utilisés pour construire un panache porte-tentacules. En effet, le ver pose ses tentacules sur chacune de ces extensions qui lui permettent de récupérer la nourriture sur une distance plus longue. Il est assez difficile de sortir l’animal de son tube (il faut un outil pour creuser et être rapide), mais la simple présence de sa construction nous confirme qu’il est bel et bien là.
Puisque des images sont parfois plus parlantes qu’un long discours, voici la partie apparente du tube de la lanice. Si vous y prêtez attention, vous devriez pouvoir en voir assez facilement sur les plages sableuses à marée basse.
Tube de Lanice conchilega sur lequel on discerne bien les morceaux de coquillages grossiers pour la partie principale du tube et les morceaux plus fins pour le panache porte-tentacules. Source
L’ouïe :

Après le sens de la vue, c’est souvent celui de l’ouïe qui est le plus sollicité : en effet, nous l’utilisons pour communiquer dans la vie de tous les jours mais également avec des gens situés à l’autre bout du monde. La nature elle-même n’est pas silencieuse et de nombreux sons peuvent être émis, entendus et décryptés.
Les sons que nous pouvons entendre en nous baladant sont de différents types. Les premiers, sont les sons émis par les animaux pour communiquer entre eux. Il peut s’agir des chants d’alerte « attention, nous ne sommes pas seuls », des chants de parade nuptiale « approche et regarde comme je suis beau gosse », de la communication plus courante entre plusieurs individus (« j’ai faim », « attention intrus »…). Et c’est grâce à ces chants qu’on peut reconnaître les oiseaux de loin, sans avoir besoin de les voir ni de les déranger. Mais il existe aussi les sons liés à l’écologie des bêtes. Un oiseau qui picore dans l’écorce des arbres nous permet, rien qu’à l’oreille, de différencier les espèces. Ainsi, le pic noir et le pic vert ne produisent pas le même son lorsqu’ils martèlent le tronc des arbres pour trouver leur nourriture.


Sources : et
En dehors des oiseaux dont beaucoup de monde sait reconnaître le chant, il est tout à fait possible de reconnaître les différents grands groupes d’insectes (mouches, coléoptères, guêpes etc.) par le son qu’ils produisent. Par exemple le bourdonnement des gros coléoptères est assez typique. Ne vous est-il jamais arrivé lors d’une soirée d’été de laisser la fenêtre ouverte et d’entendre un gros bourdonnement qui vous surprend ? Puis de voir virevolter un gros coléoptère brunâtre ?
Mais pensez surtout à un insecte que vous reconnaissez tout de suite au son du vol. Bien sûr ! Le moustique ! Un compagnon indésirable des chaudes nuits d’été. Vous connaissez probablement tellement bien ce bruit que vous n’avez aucun doute sur son émetteur. Bon, mais si le vol est une des manières d’émettre un son, il y a aussi des insectes qui « chantent ». On parle communément de « chant », mais il s’agit en fait de stridulation : un son produit par le frottement de deux surfaces. Par exemple vous saurez tout de suite faire la différence entre un criquet et une cigale rien qu’en les entendant ! D’ailleurs ce sont deux insectes très différents. Si du point de vue évolutif la cigale est proche de la punaise, le criquet, lui, est proche du grillon. Du coup il est assez facile de différencier les deux stridulations, écoutez plutôt : Grillon : http://iainpetrie.typepad.com/files/grass1.mp3
Criquet : http://www.grammas-tales.com/stuart/cricket2.wav

Chez le grillon ce sont les ailes de la première paire (rappelons que les insectes ont généralement deux paires d’ailes) qui vont se frotter l’une contre l’autre. Alors que chez le criquet, c’est la dernière paire de pattes (celles qui servent à sauter) qui se frotte contre la deuxième paire d’ailes. Deux mécanismes très différents pour des insectes pourtant proches. Il n’est alors pas étonnant que le son produit soit différent. Les experts de ces groupes d’insectes, les orthoptéristes, se basent énormément sur ces « chants » pour distinguer les différentes espèces. On peut d’ailleurs trouver des CD avec les stridulations de différentes espèces pour s’aider et apprendre. Mieux encore, la décomposition de la stridulation des criquets a même déjà été utilisée pour faire des classifications ! Mais il n’y a pas que les criquets et les grillons qui stridulent ! Par exemple le longicorne aussi le fait, mais contrairement à eux, il ne le fait pas pour la drague mais lorsqu’il est inquiet, regardez et surtout écoutez cet exemple (vous pourrez en plus profiter du bourdonnement typique des coléoptères) :
Cette stridulation est quant à elle provoquée par le frottement des deux premiers segments du thorax (la partie du milieu des insectes qui relie la tête et l’abdomen).
Hormis ces quelques cas, d’autres animaux peuvent être reconnus grâce au son et plus particulièrement grâce aux ultrasons. C’est le cas des chauves-souris. Pour se déplacer, certaines émettent des ultrasons en permanence. Mais pour les entendre, il faut un appareil permettant d’amplifier le son et de le transformer à une fréquence audible pour l’humain. Chaque espèce de chauve-souris émet un son différent, qui permet avec un peu d’expérience de les identifier ! Voici un lien vers le site de VigieNature (dépendant du MNHN) qui explique comment faire, si vous vous sentez l’âme d’un explorateur nocturne.

Le toucher :

Ce sens est moins utilisé par les naturalistes lors de leurs séances d’identification. Cependant certaines personnes sont plus “tactiles” que d’autres et utilisent beaucoup le toucher pour percevoir leur environnement. Le naturaliste peut aussi utiliser ce sens. Alors pourquoi empêcher les enfants de toucher tous les organismes croisés dans la nature ? Il faudrait presque les y encourager, du moment que cela ne porte préjudice ni à l’organisme étudié, ni à l’observateur !

La parole est à Nicobola ! Anecdote directement sortie des tiroirs pour vous !

Il y a un ver bien connu des étudiants, c’est la nereis. C’est un ver très commun notamment dans la vase et le sable. Elle appartient à la famille des Nereidae. Il existe plusieurs espèces très semblables qui peuvent notamment se différencier grâce au nombre d’yeux, de tentacules et de palpes (des appendices sur la tête). Certains se reconnaissent au comportement comme Platynereis qui vit dans un tube. Une autre méthode pour en identifier certains est la texture. Lors d’un stage d’été, je me rappelle avoir farfouillé dans la vase à la recherche de vers. Le professeur à côté de moi m’indique alors qu’il y a probablement deux espèces : une molle, la nereis commune (Hediste diversicolor) et une autre nereis plus ferme, la Perinereis. Et cette méthode fonctionnait bien. Alors je ne peux pas vous assurer que ça fonctionne seulement sur les Perinereis mais voilà au moins une méthode pour savoir qu’on a bien à faire à deux espèces différentes !
A gauche une Perinereis (source), à droite, Nereis ou Hediste  (source). Ouais, ce sont des vers, et les différencier dans la vase est encore pire…

En mer aussi on trouve beaucoup d’animaux dont la forme est assez dure à interpréter, ce qui n’aide pas l’identification ! En effet, certains organismes forment plus des masses informes qu’autre chose (c’est surtout l’impression qu’on peut avoir lorsque nous sommes débutant). Ceci arrive plus souvent chez les animaux qui vivent fixés et filtrent les particules en suspension dans l’eau, notamment les éponges (d’autres infos sur les éponges ici et ici) et les ascidies. Cependant ce serait un peu simpliste car les ascidies et les éponges sont des organismes très différents : l’ascidie est proche de nous évolutivement parlant (par rapport, par exemple à l’abeille) alors que les éponges sont probablement les organismes animaux les plus éloignés de nous (enfin, peut-être pas… allez voir ici ! L’éponge est constituée d’un ensemble de canaux et de cavités soutenus dans certains cas par de petites « spicules », une forme de squelette en kit constitué de petites « épines » non attachées entre elles. Tandis que très schématiquement, une ascidie peut être comparée à un sac semi-rigide ponctué de deux trous qui correspondent à des siphons : un pour aspirer l’eau et un autre pour la rejeter (si vous voulez voir ça de plus près, ici, une vidéo faite par nos soins). Elle a aussi une « tunique » assez rigide qui la protège.
Si les deux peuvent grossièrement être confondues à l’œil nu, au toucher la différence devient plus évidente. Premièrement par un toucher superficiel : l’éponge est spongieuse bien sur ! Elle est molle et va se déformer et reprendre doucement sa forme après avoir été pressée. L’ascidie est plus rigide, elle va se déformer mais va donner une impression bien plus ferme et glissante ! Puis elle va très vite reprendre sa forme. Ensuite en pressant plus fort et en dehors de l’eau, l’éponge va rejeter de l’eau partout autour de la zone que l’on presse contrairement à l’ascidie qui ne va la rejeter que par deux orifices, les siphons. Un dernier indice tactilement plus dérangeant, les éponges avec des spicules peuvent être irritantes ! En effet, en les pressant les spicules vont rentrer dans la peau et gratter ! La douleur elle même est donc un moyen d’identifier une éponge !
A gauche une ascidie coloniale (source), à droite une éponge encroûtante (source)… Le moyen le plus sûr de ne pas confondre est de toucher !

En parlant de douleur et d’identification, voici une autre anecdote : il m’est arrivé une fois de chercher des organismes sur des pontons flottants. En effet, le ponton flottant est toujours immergé mais accessible facilement. On y trouve fixés des animaux que l’on ne rencontre habituellement  qu’en plongée. Dans une de mes folies aventurières, j’ai voulu y jeter un coup d’œil de très près. Je m’y suis donc rendu à la nage mais malheureusement n’y voyais que des algues (le courant était fort et il était difficile de bien voir ce qu’il y avait). Puis le courant m’a poussé sur le ponton, l’épaule entrant en contact avec ces algues… Premier contact, ça brûle ! Je n’y fais pas trop gaffe… Deuxième contact, ça brûle vraiment ! Eurêka ! Ce n’étaient pas des algues mais des Hydrozoaires ! Parce que si ça brûle c’est que c’est un cnidaire ! La famille des méduses et coraux qui ont des cellules urticantes très spécifiques ! Leur forme « végétale » quant à elle, est plutôt commune aux hydrozoaires ! Je décidais donc d’en prendre sur le bord de plage et cette fois-ci, grâce à ma vue j’ai pu confirmer ma supposition et identifier ça comme un joli Tubularia !
Dans le remous des vagues dur d’imaginer que ce magnifique animal… est un animal ! (Source)

A mon tour, à mon tour ! Deux mots avant que Boris ne reprenne la parole après les anecdotes passionnantes de Nico.

Pour continuer dans le domaine du « toucher marin », un petit exemple avec deux petits poissons (oulalalala, j’ai osé prononcer le mot interdit). Il y a quelques années maintenant, j’ai fait un stage sur la faune littorale marine dans lequel j’ai appris énormément sur la biologie, le comportement, ou l’anatomie des bestioles qui composent ces écosystèmes. Comme plusieurs de mes collègues stagiaires, on avait beaucoup de mal à se rappeler la différence entre les blennies et gobies. A part le célèbre argument « parce que je le sais », difficile de mettre des mots sur les différences même si en regardant sur des photos, ce ne sont pas les bêtes les plus mimétiques du monde.
Les confusions étaient surtout due à la biologie de ce type de poisson, les deux espèces étant de petites tailles et se posant préférentiellement sur le fond, dans les recoins ou les flaques. Mais au final, lorsqu’on les touche, pas de doute. Tandis que la blennie est lisse car dépourvue d’écailles (ou écailles rudimentaires), le gobie a des écailles qui lui confèrent un toucher bien plus rugueux. Facile hein ? (Encore faut-il pouvoir les attraper, et alors là, bon courage).

A gauche : Parablennuis gattorugine (une blennie, photo faite par nos soins), à droite, Gobius paganellus (un gobie, source).


Place à la botanique ! Au tour de Boris de parler !

On peut également différencier les plantes à l’aide du toucher. Un premier exemple qui me vient à l’esprit et qui vous parlera très facilement, c’est l’ortie (Urtica dioica) qui est bien connue pour les douleurs qu’elle provoque. Cependant, d’autres plantes présentent des caractéristiques moins douloureuses qui peuvent être identifiées rien qu’avec le toucher. Entre autre, la grande consoude (Symphytum officinale) qui possède sur la tige et les feuilles des poils rugueux très facilement identifiables les yeux fermés :
Source
D’autres plantes comme celles de la famille des Geraniaceae (les géranium) ou les Lamiaceae (où l’on retrouve la menthe, le romarin…) possèdent des poils plus ou moins duveteux et soyeux. Je me souviens, lors d’un stage, je devais apprendre à différencier le Geranium rotundifolium du Geranium molle au stade de plantule, et pour cela, nous n’avions à notre disposition que les tiges poilues. Il a bien fallut que j’utilise ce que j’avais sous la main pour faire la différence entre les deux ! Car ces deux espèces n’ont pas les mêmes poils sur la tige : le G. molle est plus poilu que le G. rotundifolium.
D’autres plantes, comme les Poaceae, s’identifient assez bien rien qu’en passant la main dessus. Ainsi, la houlque laineuse (Holcus lanatus) et le dactyle aggloméré (Dactylis glomerata) peuvent être confondus lorsqu’ils ne sont pas encore en fleur. Pour les différencier, il suffit de passer les doigts sur la tige : la houlque est beaucoup plus douce au toucher que le dactyle.
A gauche le dactyle (source), à droite la houlque (source)
En hiver, la plupart des arbres de nos régions perdent leurs feuilles (on dit que le feuillage est caduc). Seuls les troncs nus restent accessibles pour le naturaliste… mais tout n’est pas perdu, loin de là ! Il est très facile d’identifier les écorces au toucher. Une écorce lisse sera associée au hêtre (Fagus sylvatica) ou au charme (Carpinus betulus) tandis qu’une écorce rugueuse sera associée au chêne (Quercus robur)… Bien évidement, les informations récoltées à l’aide du sens du toucher sont à mettre en relation avec d’autres informations obtenues à l’aide des autres sens pour une identification complète.
Écorce rugueuse du chêne pubescent à gauche (source) et écorce lisse du hêtre (source)

L’odorat :

Après la vue, l’ouïe, le toucher vient l’odorat. Le naturaliste peut être amené à utiliser ce sens bien plus souvent que dans la vie de tous les jours, notamment avec les organismes qu’il peut manipuler. Par exemple beaucoup de plantes et d’animaux rejettent des odeurs particulières pour attirer ou repousser d’autres organismes.

Aurélide a la parole :

Pour reprendre dans les anecdotes littorales, je me souviens d’une sortie à marée basse lors de ce stage sur la faune marine (dont j’ai parlé un peu plus haut). Notre maître de stage nous a appelés, Nico et moi, vers un banc de sable et nous a demandé de sentir, sans se pencher, sans s’approcher du sol, sans creuser, juste là, tous les trois à sniffer l’air. En quelques instants, l’odeur est parvenue à nos narines. Une odeur infecte d’œuf pourri, c’était atroce (et non, ce n’était pas une blague de mauvais goût). Il ne s’agissait pas de matière en décomposition, mais d’un annélide qui porte TRÈS BIEN son nom : Phylo foetida. Un moyen désagréable mais très simple de repérer et identifier la bête.
(D’ailleurs, Nico a fait l’amère expérience de se retrouver avec un de ces vers sous son lit. Les stagiaires avaient trouvé bon de lui faire cette mauvaise blague. Pour le coup, on ne pourra pas mentionner la célèbre phrase « aucun animal n’a été maltraité dans ce tournage », désolés…)

Après cette anecdote malodorante, voici un peu de douceur avec Boris :

Evidemment, on peut reconnaître certaines fleurs à leur parfum : le lys (Lilium sp.), la rose (Rosa canina) et tant d’autres que l’on trouve chez le fleuriste. Cependant, les fleurs ne sont pas les seuls organes odorants. Parfois, elles ne sentent rien, ou bien ne sont même pas présentes. Il faut donc chercher d’autres parties de la plante qui possèdent des critères odorants.
C’est le cas par exemple de la mélisse (Melissa officinalis), qui ressemble beaucoup à la menthe odorante (Mentha suaveolens)… tant qu’elle ne porte pas de fleurs. Il suffit de froisser alors les feuilles de la mélisse entre ses doigts pour se rendre compte qu’elle libère un parfum rappelant celui du citron ! Rien à voir avec la menthe…
A gauche la mélisse (source), à droite la menthe (source).
Le géranium herbe-à-robert (Geranium robertianum) quant à lui est facilement identifiable grâce à l’odeur détestable qu’il répand lorsque ces feuilles sont coupées, ce qui permet de l’identifier facilement parmi d’autres espèces de géranium.
S’il vous arrive de vous promener en bordure de mer, vous avez peut être rencontré cette plante : l’ajonc d’europe (Ulex europaeus), à ne pas confondre avec le genêt à balais (Cytisus scoparius). Bien que ces deux plantes possèdent une morphologie différente, elles ont des fleurs très semblables. Un critère odorant à coup sûr pour trancher est de froisser la fleur entre ses doigts : si elle libère une odeur de noix de coco, c’est que vous avez un ajonc en face de vous !
A gauche du genet (source), à droite de l’ajonc (source).
Une autre plante qui pousse au printemps sur le bord des chemins pourrait passer inaperçue… si elle ne produisait pas une odeur caractéristique dès lors que ses feuilles sont tranchées : il s’agit de l’Alliaire (Allaria petiolata) qui émet une forte odeur d’ail dès que ses feuilles sont coupées. Aucun doute possible alors quant à l’identité de la plante…
Le goût :

Eh oui ! On peut utiliser ce sens pour l’identification des organismes ! Même si on l’utilise tous les jours lorsque l’on mange, il est rarement sollicité pour d’autres raisons. S’il est assez rare d’identifier les animaux par le gout dans un cadre naturaliste (cela signifierait les tuer en général, et tous les animaux identifiables par le gout se retrouvent souvent dans nos assiettes), les plantes et champignons eux peuvent l’être de manière plus aisée ! Et bien qu’un grand nombre d’entre eux soient toxiques pour l’être humain, il n’est pas rare que certains manuels naturalistes conseillent de goûter un petit morceau de l’organisme pour savoir s’il possède un goût particulier (certains champignons non comestibles goûtent fortement le fromage… difficile de se tromper sur l’identification dans ce cas !).
Bien évidement, quand on imagine identifier les plantes au goût, on pense tout de suite aux fruits qu’elles peuvent donner. Mais d’autres parties de la plante peuvent être mastiquées pour aider à l’identification. C’est le cas par exemple du tussilage, ou pas-d’ane (Tussilago farfara) qui peut être difficile à identifier car en été, seules les feuilles subsistent alors que les fleurs sont fanées. En goûtant les feuilles du tussilage, on garde sur la langue un goût de poivre très prononcé.
Une autre plante, Lepidium campestre, possède quant à elle un goût prononcé de… chou-fleur. Même sans les fleurs, il est donc aisé de la reconnaître ! D’autres organismes, qui ne sont pas des plantes mais qui sont aussi des organismes fixés, se reconnaissent souvent à leur goût. Il s’agit des champignons (la plupart des champignons comestibles sont des basidiomycètes). Ainsi, la russule intègre (Russula integra) possède un goût de noisette lorsque sa chair est consommée crue. D’autres champignons peuvent avoir des goûts se rapprochant du poivre, du miel ou encore… du camembert ! Dans le cas des algues, l’espèce Osmundea pinnatifida se reconnait assez facilement par la vue lorsqu’on a un poil d’expérience (par sa couleur, sa forme et aussi l’endroit dans lequel elle se trouve), mais pour l’identifier à coups sûr, il suffit d’en croquer un bout qui a un léger goût d’ail poivré (très bon dans une salade d’ailleurs !).

Les cinq sens nous sont essentiels pour la vie de tous les jours. Si l’un d’entre eux nous fait défaut, il est souvent contrebalancé par le surdéveloppement des autres. Dans le domaine du naturalisme aussi, on retrouve cette complémentarité entre les sens lors de l’identification des organismes, tout comme il existe des cas pour lesquels l’un des cinq sens sera plus utile que les autres. Il y a tout un tas de façons de reconnaître les organismes qui nous entourent. Même si vous n’avez besoin que d’éléments visuels n’hésitez pas à sentir, toucher, écouter, goûter. Cela contribue forcément au processus de mémorisation. D’autant plus que c’est aussi super chouette de pouvoir réunir le plus de critères possibles. Mais aussi, il arrive que la diversité au sein d’un taxon fausse votre identification et vous mette à rude épreuve. Il est alors bien plus sûr de pouvoir combiner le plus d’indices possibles.

Bibliographie :
- Eggenberg S, Möhl A. 2008. Flora vegetativa. Edition Rossolis.
- Knudsen H, Petersen JH. 2005. Les Champignons dans la nature. Edition Delachaux et Niestlé.
- ADER Denis, DUMAS Jacques, HUET Sylvie,  in : DORIS, 27/1/2014 : Lanice conchilega (Pallas 1766), http://doris.ffessm.fr/fiche2.asp?fiche_numero=505
- WEBER Matthias, SITTLER Alain-Pierre, REGUIEG Aedwina, CHANET Bruno,  in : DORIS, 15/1/2014 : Gobius paganellus Linnaeus, 1758, http://doris.ffessm.fr/fiche2.asp?fiche_numero=1181
La majorité de ces anecdotes proviennent de notre expérience sur le terrain ou de ce que nous avons appris en cours, d’où une biblio courte !
Continue reading