Rex, va chercher ! Les tyrannosaures jouaient à la balle

Featured

baballe
La réputation de brute sanguinaire du tyrannosaure s’en relèvera-t-elle ? Sans doute, mais une analyse parue au mois d’août dans la revue Ethology, Ecology & Evolution suggère que les tyrannosaures ne se contentaient pas de chasser, de bâfrer et de digérer. Ils jouaient. De préférence avec un os sphérique, un condyle occipital de cératopsien. Bref ils [...]
Continue reading

Mission to Mars : une affaire de sol !

Aujourd’hui, une fois n’est pas coutume, on va parler un peu de science fiction. Ouiiii je sais ce n’est pas l’objectif du blog, on est supposé parler de ce qui existe sur Terre et pas de ce qui pourrait exister dans l’espace.
Bref. Il y a quelques temps, je suis retombé sur un livre égaré au fond de ma bibliothèque : The Mars Trilogy, de Kim Stanley Robinson. Je dois avouer que, étant un gros flemmard, je l’ai lu en version française. Pour la faire courte, il s’agit de l’histoire romancée des premiers humains à avoir colonisé Mars. On nage bien en pleine science fiction. Quoique, avec le projet Mars One de la NASA, peut-être qu’on n’en est pas si loin… Sans vous dévoiler l’intrigue de ce livre, quelle ne fut pas ma surprise de constater que bon nombre de techniques et technologies présentées sont aujourd’hui bien réelles et utilisées (presque) tous les jours ! Entre autre, il y a le problème de la terraformation – néologisme décrivant la transformation d’une planète hostile à l’être humain en planète dont les conditions naturelles sont semblables à celle de la Terre. Dans le livre de la trilogie de Mars, les colons font face à ce souci récurrent : comment faire pousser des plantes à la surface de Mars ?
Alors oui, bien entendu, il y a le problème de la température (il fait « légèrement » plus froid sur Mars que sur la Terre, c’est-à-dire une température moyenne de -55°C ; il vaut mieux ne pas oublier son chandail et ses moon-boots quand on sort faire son footing) qui empêche directement la croissance des plantes. Mais qu’à cela ne tienne ! Imaginons un instant que des êtres humains s’installent sur Mars, ils n’iront pas se faire bronzer tout de suite en haut du Mont Olympus. Ils resteront probablement enfermés dans des caissons étanches pressurisés. En effet, en plus de faire plutôt froid à la surface de Mars, l’atmosphère y est irrespirable pour l’être humain : elle est composée à 95% de CO2. Par comparaison, l’atmosphère actuelle de la Terre contient 0.04% de CO2et des études cliniques montrent qu’à partir de 6% ou 7% de CO2 dans l’atmosphère, on commence à éprouver une gêne respiratoire. Sans compter que la pression est bien moins importante sur Mars que sur la Terre : elle se situe à environ 600 Pascal (c’est l’unité de mesure de la pression atmosphérique) si on fait une moyenne. Il ne faut pas oublier que sur Terre la pression moyenne est de 101300 Pascal, ce qui fait que la pression atmosphérique terrestre est environ 170 fois plus importante que celle de Mars. On va donc éviter pour le moment de sortir sans scaphandre intégral, sous peine de mourir de froid, d’asphyxie et de pertes de fluides vitaux par tous les orifices.
Revenons à nos colonisateurs. Quelle sera leur priorité une fois installés ? Eh bien ils auront à assurer leurs besoins immédiats : nourriture, air, eau. C’est bien joli d’envoyer tout ça depuis la Terre, mais au bout d’un moment, manger des conserves, ça fait péter les plombs ! Du coup, il faudra qu’ils cultivent leur propre nourriture… Et pour ça, c’est pas compliqué ! Un peu de terreau, quelques graines et hop ! un potager sous serre ! Oui mais voilà : sur Mars, il n’y a pas de sol. C’est juste de la pierre nue ! Du coup, des chercheurs se sont posé la question : est-on à l’heure actuelle capable d’identifier des plantes qui pourraient potentiellement croitre sur les sols martiens ? Cet article a déjà été analysé par Pierre Barthélémy sur leblog « passeur des sciences » ou vous pouvez aller voir directement ce que disent les chercheurs hollandaisdans leur article. Tout ça pour dire que, oui, certaines plantes sont bien capables de pousser sur des sols martiens.
Suite à ça, j’aimerai revenir sur un point clé : c’est quoi, un sol ? Qu’est ce qui fait qu’un sol est « bon » pour une plante ? Reprenons du début, et tournons nous vers le passé avant de regarder vers l’avenir. Prenons l’exemple de la Terre à l’Ordovicien, période qui se trouve grosso-modo entre -485 et -443 millions d’années. A peu près. A la louche, quoi. Bref. A cette époque, c’est plutôt vide à la surface de la Terre – alors que sous l’eau, oh boy, c’est la grande fiesta ! Mais ce n’est pas vide pour très longtemps : les plantes chlorophylliennes vont coloniser ce no man’s land… mais ça ne s’est pas fait en un jour ! Au début, on trouvait vraisemblablement des organismes proches des lichens, des cyanobactéries, des organismes résistants mais ne dépassant probablement quelques centimètres de haut ([1] et [2]). Et c’est là que nous en revenons à notre planète Mars. Car sur la Terre à cette époque, tout du moins sur les continents, les conditions s’apparentent à ce qu’on trouve actuellement sur la planète rouge : de la roche nue et constamment balayée par les vents. Pas terrible pour nos petites plantes actuelles qui ont l’habitude d’avoir un sol profond pour développer leurs racines ! 
Paysage du Silurien, la période géologique juste avant le Dévonien. Que des petites plantes à ras de terre, qui poussent directement sur la roche nue. Source
Vous avez déjà du remarquer qu’il existe différents types de sols, ne serait-ce que lors d’une promenade en forêt, par comparaison avec les pelouses bien entretenues du parc municipal d’à côté. Prenons un sol typique, comme montré sur la photo suivante
Une coupe de sol. Source 
Le sol, c’est un gros gâteau, en fait. C’est un ensemble de couches, appelées « horizons ». Au dessus du gâteau, le glaçage, c’est la partie vivante du sol, qui comprend la litière (l’ensemble des feuilles et organismes morts qui se déposent progressivement à la surface) et l’humus (qui est l’horizon où se retrouve l’ensemble de la matière organique morte et tous les décomposeurs tels que les vers de terre, insectes et champignons). C’est l’humus qui est la partie la plus importante du sol : il contient tous les nutriments nécessaires à la croissance des plantes terrestres, et en particulier, tout l’azote nécessaire à la synthèse des protéines des plantes ainsi que le phosphore utilisé dans la construction des ADN et ARN. C’est pour ça qu’on ajoute des engrais azotés et phosphatés dans les cultures, car au bout d’un moment ces ressources s’épuisent si le sol est trop cultivé ! En dessous, dans la génoise du gâteau, on retrouve progressivement un mélange entre la matière organique morte et la roche-mère plus ou moins fragmentée. C’est là que se retrouvent aussi toutes les grosses racines des arbres, qui cherchent toujours plus loin en profondeur l’eau, élément également essentiel à la croissance des plantes.
Du gâteau, ce sol ! Ou bien est-ce le contraire ? Source
Et c’est là qu’on arrive à une autre découverte qui pourrait bien aider les futurs colons martiens : d’autres chercheurs espagnols  ont mis en évidence que certaines plantes étaient capables d’utiliser l’eau contenue dans les roches. Je précise : contenue dans les roches à l’échelle moléculaire. On parle ici d’eau de cristallisation, présente directement dans les cristaux de roches. En particulier cette eau se retrouve dans le gypse hydraté, appelé également sulfate de calcium hydraté. Ici, l’eau est associée très étroitement aux autres atomes et est, théoriquement, indisponible pour les végétaux (pour info, le gypse, une fois chauffé et déshydraté, sert à faire du plâtre). Eh bien, finalement, peut être pas… les chercheurs ont mis en évidence avec des études isotopiques que des molécules d’eau, initialement présentes dans le gypse, se retrouvaient au cours de la journée dans les plantes qui poussaient directement sur ce minéral. Je ne vais pas détailler la méthode, mais il est possible de différencier l’eau disponible présente dans le milieu, de l’eau – normalement – indisponible présente dans les pierres. Conclusion : certaines plantes, soumises à des conditions de croissances extrêmement difficiles, possèdent des caractères et des techniques qui leur permettent de récupérer l’eau contenue dans les roches. Et ce qui est très intéressant, c’est qu’il existe sur Mars des roches qui se comportent comme le gypse…
Un peu plus haut, j’ai parlé de la nécessité pour les plantes d’avoir des composés azotés et phosphatés dans le sol à leur disposition pour pouvoir croître. Pour revenir à l’étude réalisée par les chercheurs hollandais, ils ont mis en évidence que les légumineuses poussaient sans problème sur des sols dépourvus de toute matière organique. En effet, ces plantes possèdent la capacité de récupérer l’azote atmosphérique et peuvent donc se développer sans apports provenant du sol… du moment qu’il y a de l’eau en quantité ! Les légumineuses sont ce qu’on appelle des plantes pionnières : elles s’installent sur un sol dépourvu ou presque d’éléments nutritifs, croissent puis meurent, et laissent un sol plus riche qu’au départ car elles ont fixé l’azote de l’air en matière organique utilisable par d’autres plantes qui elles, ont besoin de cet apport dans le sol. Le problème c’est que sur Mars, il n’y a pas ou peu d’azote disponible dans l’atmosphère… donc là encore, il faudrait que les futurs martiens trouvent comment apporter de l’azote sur la planète .
La plante idéale pour commencer une terraformation devrait donc être capable de pousser directement sur la roche nue, sans apport d’eau, ou presque. Il faudrait cependant que la technologie protège ces végétaux de la trop faible pression atmosphérique, en faisant par exemple pousser des forêts sous dômes transparents. Par la suite, les composés produits par les végétaux pourraient être exportés à la surface nue de Mars pour commencer à former des sols. Dans un avenir pas si lointain, en utilisant toutes nos connaissances sur les comportements et les caractéristiques des différentes plantes, on pourrait être capable d’utiliser tout un cortège de plantes pionnières afin de préparer des sols viables pour d’autres générations de plantes plus exigeantes. Imaginez : une plante pour récupérer de l’eau de cristallisation, une plante pour enrichir le milieu en azote, une plante pour fragmenter mécaniquement la roche-mère en plus petits morceaux… C’est de la science fiction, mais plus pour très longtemps !
Et si Mars la Rouge devenait Mars la Bleue ? Source
Boris
Continue reading

Cephalus, le nouveau webzine scientifique gratuit!

Featured

head_ceph
Voici enfin la réponse tant attendue à cette question que vous ne vous posez pas : à quoi ai-je bien pu passer mes journées et mes nuits ces derniers mois ? Eh bien je vais vous le dire : outre faire du pain, des cookies et des cheesecakes à l’allure …
Continue reading

L’indolence poussée à son paroxysme : quand les parasites manipulateurs laissent les autres manipuler

Featured

mr-lazyworm
Le soleil se lève tranquillement sur la vallée. Les premiers rayons viennent caresser les herbes pâles, croulant encore, dans une position de sommeil, sous le poids de minuscules diamants de rosée. La vie sort de sa torpeur dans le monde du peuple de l’herbe. Insouciante à l’ambiance si particulière de ce début de journée, une fourmi prend la route. Chaque ouvrière de la colonie connaît parfaitement son rôle, entre le soin des jeunes, la défense du nid, l’aspect maçonnerie ou la quête de nourriture. Notre compère fonce sans se retourner pour accomplir sa tâche à elle : escalader glorieusement un brin d’herbe, se munir d’une patience de fer et attendre son destin… se faire brouter. 
La vie suit son cours normal chez le peuple de l’herbe, inconscient du drame qui se prépare (par ici pour plus de photos du talentueux Andrey Pavlov)
Maintenant que j’ai votre attention, revenons à la réalité impitoyable de ce qu’est réellement la vie. La pauvre fourmi ne survivra pas, désolée, mais elle va permettre à une myriade d’autres bestioles de se reproduire. Des êtres craints par tous, y compris des humains : les parasites. En particulier, notre jeune hyménoptère abrite en son corps des trématodes du gentil nom de Dicrocoelium dendriticum. En moins charmant, on parle aussi de la petite douve du foie. Ce parasite se reproduit exclusivement dans la bedaine des herbivores, mais son cycle passe invariablement par des fourmis. Et comme celles-ci n’ont pas naturellement tendance à aller spontanément se faire brouter, les parasites ont développé la capacité à modifier le comportement de leur hôte, poussant ce dernier à adopter des attitudes carrément suicidaires. Leurs techniques perfides ont valu à ces parasites le doux surnom de manipulateurs.
Petit résumé du cycle de Dicrocoelium dendriticum
Bon, tout ça on connaît bien, d’autant que j’y ai déjà consacré tout un article. Mais il y a un petit détail dont j’ai omis de vous parler. Les parasites manipulateurs ont partout dans le monde maitrisé l’art de faire faire à leur hôte ce dont ils ont eux-mêmes besoin (aller à tel endroit, se rapprocher de tel animal, etc.). Mais certains vont plus loin : ils font faire faire ! Plutôt que de faire faire soi-même, ils laissent faire les autres. Vous me suivez ?
Revenons à notre fourmi. Goulue comme elle est, elle a par le passé commis l’erreur bientôt fatale de consommer des trématodes, délicieusement enfouis dans de la bave d’escargot (encore un hôte intermédiaire du parasite). Une fois les bestioles avalées, un des individus migre dans le cerveau, où il pourra mettre en place son plan machiavélique de manipulation. Et les autres individus ? Rien. Ils laissent faire le leader. Pourquoi se fatiguer alors qu’un seul parasite suffit à prendre les commandes ? Pis encore, le fayot qui s’est précipité dans le cerveau ne survivra pas. Autrement dit, seuls les individus qui n’ont pas tenté de manipuler vont s’en sortir… Dans ce cas, fort à parier qu’on ait affaire à de la sélection de parentèle : les parasites sont probablement des clones, partageant le même matériel génétique, dont un se sacrifie pour les autres de la même manière que les fourmis, ironie du sort, se sacrifient aussi pour leur colonie. 
Changeons de cap sans transition pour une petite balade au bord de la mer. C’est marée basse. Le tableau semble idyllique. Sous un ciel d’un bleu éclatant et au son lointain de la houle, quelques oiseaux marins se baladent sur la plage, complètement indifférents à notre présence, s’arrêtant de temps en temps pour plonger le bec dans le sable détrempé. Le caractère idyllique est beaucoup moins évident pour quelques bivalves, autrement surnommés palourdes, qui sont en train de se faire déchiqueter par le bec des piafs.
Si les pauvres mollusques n’ont pas réussi à s’enfouir dans le sable, comme ils le font généralement, c’est encore la faute à un parasite, un autre trématode du nom de Curtuteria australis. Sa méthode à lui est un tantinet moins subtile. Pour pousser son hôte palourde à s’exposer à la prédation de son hôte final (les oiseaux, dans lesquels il pourra se reproduire), le trématode s’installe dans le pied du bivalve et se développe d’une telle manière qu’il modifie sa morphologie, le rendant inutilisable. Impossible de s’enterrer dans le sable sans ce précieux outil, les mollusques n’ont plus qu’à attendre de se faire picorer.
 
Pour ceux qui se demandent comment un bivalve peut s’enfouir lui-même dans le sable… et si vous avez un peu de patience !
Mais il y a une autre dimension à cette histoire. Les oiseaux ne sont pas les seuls prédateurs des environs, et quand la marée remonte, c’est aux poissons que les mollusques ont affaire. Ceux-ci viennent lui mâchouiller le pied, la partie qui dépasse de la coquille. Les choses se corsent pour lui, mais de toute façon il est déjà condamné. En revanche, cette deuxième menace n’est pas du goût des parasites qui se trouvent justement dans le pied. Finir dans un poisson, qui n’est pas un hôte approprié, c’est la mort assurée. Certains individus parasites ont, à l’instar de la douve du foie, trouvé la parade. Pourquoi prendre le risque de se faire avaler par de la poiscaille quand on peut attendre tranquillement au chaud dans la coquille du bivalve ? Ils se développent donc sans soucis dans une partie du mollusque où ils n’ont pas d’effet, laissant les plus braves faire le travail pour rendre l’hôte infirme.
Issue fatale pour le bivalve, salvatrice pour le parasite (Source)
Les deux trématodes ne sont pas des exemples isolés et prouvent que quelques parasites sont passés maîtres suprêmes dans une catégorie que beaucoup leur envient : non contents d’arriver à leurs fins en poussant leurs hôtes à faire ce dont ils ont besoin, certains parviennent même à leurs fins… en ne faisant absolument rien. 

Bibliographie :

Carney, W.P. 1969. Behavioral and morphological changes in carpenter ants harboring dicrocoeliid metacercariae. The American Midland Naturalist Journal, 82, 605–611.
Poulin, R., Fredensborg, B. L., Hansen, E., & Leung, T. L. F. 2005. The true cost of host manipulation by parasites. Behavioural Processes, 68(3), 241–244. 
Thomas, F., Poulin, R. 1998. Manipulation of a mollusc by a trophically transmitted parasite: convergent evolution or phylogenetic inheritance? Parasitology, 116, 431–436.
Sophie Labaude
Continue reading

Le cri de la peur du drongo

Tout est partie d’une discussion avec mon reup où il a entendu une émission à la radio, en voiture, à propos d’un piaf qui s’appelle le drongo. Ça te dit rien ? Le drongo est une famille de petits oiseaux passereaux des tropiques de l’Afrique à l’Océanie en passant par l’Australie. Il mesure environ 25 […]
Continue reading

La sarabande du tournesol

Featured

tournesols
Soleil en terre, suis-tu le soleil au ciel ? Ta sarabande est-elle réelle ou est-ce une illusion des humains, mauvais observateurs qu’ils sont ? Plus d’un artiste fut ébloui par la splendeur éclatante des pétales jaunes. Une seule solution pour trancher dans le vif du sujet : faire appel à un scientifique obtus et insensible […]
Continue reading